Lecture 01: Introduction

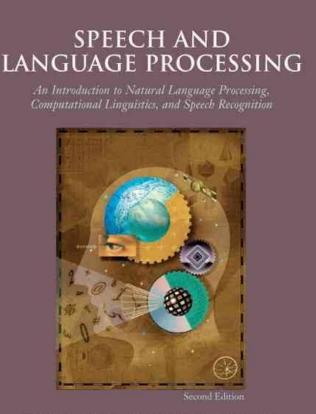
Instructor: Dr. Hossam Zawbaa

Image by kirkh.deviantart.com

Course Syllabus

- Introduction.
- Probability
- Language Modeling.
- Speech phonetics.
- Automatic speech recognition.
- Template matching.
- HMMs.
- Acoustic Modeling.
- Voice building.
- Multilingual Speech Processing.

Textbook



DANIEL JURAFSKY & JAMES H. MARTIN

An electronic copy is also available free online: <u>https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf</u>

Grading

- Lab activities and assignments: 10%
- Final project: 20%
- Mid-term exam: 20%
- Final exam: 50%
- Extra credit: 5% for students who participate actively on the lectures.
- Extra credit: 5% for students who obtain the best final project.

Prerequisites

- Good knowledge of digital signal processing
- Statistics and probability
- Basic knowledge of machine learning
- Basic knowledge of natural language processing
- Experience with Matlab will help

Automatic Speech Recognition

- Speech recognition is the inter-disciplinary sub-field of computational linguistics that develops methodologies and technologies that enables the recognition and translation of spoken language into text by computers.
- **Speech recognition** is the ability of a machine or program to identify words and phrases in spoken language and convert them to a machine-readable format.
- It is used to identify the words a person has spoken or to authenticate the identity of the person speaking into the system.
- Automatic speech recognition is also known as automatic voice recognition (AVR), voice-to-text or simply speech recognition.

Definitions

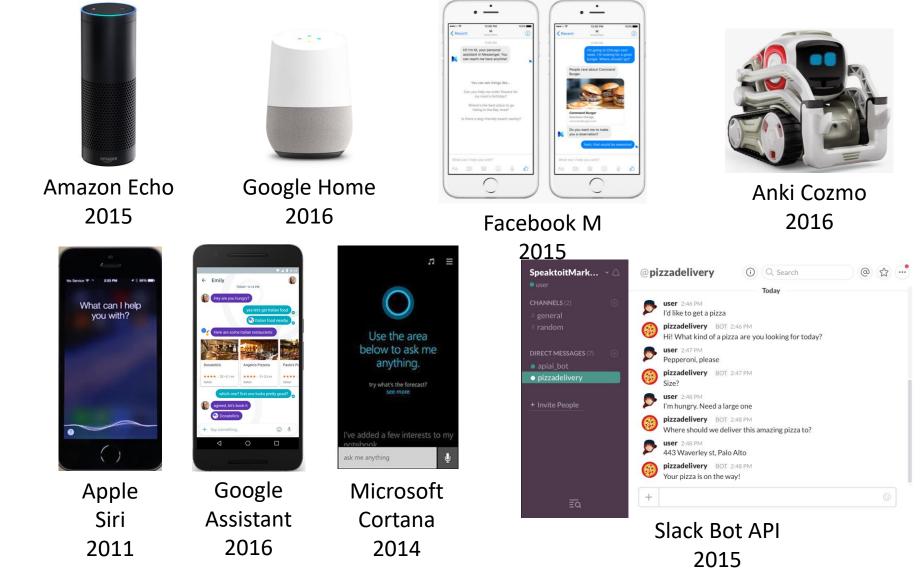
- Speech Recognition
 - Speech-to-Text
 - Input: a wave file,
 - Output: string of words
- Speech Synthesis
 - Text-to-Speech
 - Input: a string of words
 - Output: a wave file

Automatic Speech Recognition (ASR) Automatic Speech Understanding (ASU)

Applications

- Voice Dictation
- Telephone-based Information (directions, air travel, banking, etc)
- Hands-free (in car)
- Second language (accent reduction)
- Audio archive searching
- Linguistic research
 - Automatically computing word durations, etc.

An exciting time for spoken language processing



Applications of Speech Synthesis/Text-to-Speech (TTS)

- Games
- Telephone-based Information (directions, air travel, banking, etc)
- Eyes-free (in car)
- Reading/speaking for disabled
- Education: Reading tutors

Applications of Speaker/Language Recognition

- Language recognition for call routing
- Speaker Recognition:
 - Speaker verification (binary decision)
 - Voice password, telephone assistant
 - Speaker identification (one of N)
 - Criminal investigation

History: foundational insights 1900s-1950s

- Automaton:
 - Markov 1911
 - Turing 1936
 - McCulloch-Pitts neuron (1943)
 - Shannon (1948) link between automata and Markov models
- Human speech processing
 - Fletcher at Bell Labs (1920's)
- Probabilistic/Information-theoretic models
 - Shannon (1948)

History: early ASR systems

- 1950's: Early Speech recognizers
 - 1952: Bell Labs single-speaker digit recognizer
 - Measured energy from two bands (formants)
 - Built with analog electrical components
 - 2% error rate for single speaker, isolated digits
 - 1958: Dudley built classifier that used continuous spectrum rather than just formants
 - 1959: Denes ASR combining grammar and acoustic probability
- 1960's
 - FFT Fast Fourier transform (Cooley and Tukey 1965)
 - LPC linear prediction (1968)
 - 1969 John Pierce letter "Whither Speech Recognition?"
 - Random tuning of parameters,
 - Lack of scientific rigor, no evaluation metrics
 - Need to rely on higher level knowledge

ASR: 1970's and 1980's

- Hidden Markov Model 1972
 - Independent application of Baker (CMU) and Jelinek/Bahl/Mercer lab (IBM) following work of Baum and colleagues at IDA
- ARPA project 1971-1976
 - 5-year speech understanding project: 1000 word vocab, continuous speech, multi-speaker
- 1980's+
 - Large corpus collection
 - Resource Management
 - Wall Street Journal

State of the Art

- ASR
 - speaker-independent, continuous, no noise, world's best research systems:
 - Human-human speech: ~13-20% Word Error Rate (WER)
 - Human-machine speech: ~3-5% WER

LVCSR Overview

- Large Vocabulary Continuous (Speaker-Independent) Speech Recognition
 - ~64,000 words
 - Speaker independent (vs. speaker-dependent)
 - Continuous speech (vs isolated-word)
 - Build a statistical model of the speech-to-words process
 - Collect lots of speech and transcribe all the words
 - Train the model on the labeled speech
 - Paradigm: Supervised Machine Learning + Search

Introduction to Probability

- Experiment (trial)
 - Repeatable procedure with well-defined possible outcomes
- Sample Space (S)
 - the set of all possible outcomes
 - finite or infinite
 - Example
 - coin toss experiment
 - possible outcomes: S = {head, tail}
 - Example
 - die toss experiment
 - possible outcomes: S = {1,2,3,4,5,6}

Introduction to Probability

- Definition of sample space depends on what we are asking
 - Sample Space (S): the set of all possible outcomes
 - Example
 - die toss experiment for whether the number is even or odd
 - possible outcomes: {even, odd}
 - *not* {1,2,3,4,5,6}

More definitions

- Events
 - an *event* is any subset of outcomes from the *sample space*
- Example
 - die toss experiment
 - let A represent the event such that the outcome of the die toss experiment is divisible by 3
 - A = {3, 6}
 - A is a subset of the sample space S= {1, 2, 3, 4, 5, 6}

Introduction to Probability

- Some definitions
 - Counting
 - suppose operation o_i can be performed in n_i ways, then
 - a sequence of k operations o₁o₂...o_k
 - can be performed in $n_1 \times n_2 \times ... \times n_k$ ways
 - Example
 - die toss experiment, 6 possible outcomes
 - two dice are thrown at the same time
 - number of sample points in sample space = 6 × 6 = 36

Definition of Probability

- The probability law assigns to an event a nonnegative number Called P(A), also called the probability A
- That encodes our knowledge or belief about the collective likelihood of all the elements of A
- Probability law must satisfy certain properties

Probability Axioms

- Nonnegativity
 - P(A) >= 0, for every event A
- Additivity
 - If A and B are two disjoint events, then the probability of their union satisfies:
 - $P(A \cup B) = P(A) + P(B)$
- Normalization
 - The probability of the entire sample space S is equal to 1, I.e. P(S) = 1.

An example

- An experiment involving a single coin toss
- There are two possible outcomes, H and T
- Sample space S is {H, T}
- If coin is fair, should assign equal probabilities to 2 outcomes
- Since they have to sum to 1
- P({H}) = 0.5
- P({T}) = 0.5
- $P({H, T}) = P({H}) + P({T}) = 1.0$

Probability definitions

• In summary:

 $P(E) = \frac{\text{number of outcomes corresponding to event } E}{\text{total number of outcomes}}$

Probability of drawing a heart from 52 well-shuffled playing cards:

$$\frac{13}{52} = \frac{1}{4} = 0.25$$

Probabilities of two events

- If two events A and B are independent
- Then
 - P(A and B) = P(A) x P(B)
- If flip a fair coin twice
 - What is the probability that they are both heads?

How about non-uniform probabilities? An example

- A biased coin,
 - twice as likely to come up tail as head,
 - is tossed twice
- What is the probability that at least one head occurs?
- Sample space = {hh, ht, th, tt} (h = head, t = tail)
- Sample points/probability for the event:
 - ht 1/3 x 2/3 = 2/9
 hh 1/3 x 1/3 = 1/9
 - th 2/3 x 1/3 = **2/9** tt 2/3 x 2/3 = 4/9
- Answer: 5/9 = ≈0.56 (*sum of weights in* **red**)

Conditional Probability

- A way to reason about the outcome of an experiment based on partial information
 - In a word guessing game the first letter for the word is a "t". What is the likelihood that the second letter is an "h"?
 - How likely is it that a person has a disease given that a medical test was negative?
 - A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?
- We need a new probability law that gives us the conditional probability of A given B
- P(A|B)

Conditional Probability

- let A and B be events
- p(B|A) = the *probability* of event B *occurring given* event A *occurs*
- definition: $p(B|A) = p(A \cap B) / p(A)$

S

Conditional probability

- One of the following 30 items is chosen at random
- What is P(X), the probability that it is an X?
- What is P(X|red), the probability that it is an X given that it is red?

0	Х	х	х	0	0
0	х	х	0	х	0
0	0	0	x	0	х
0	0	0	0	x	0
0	x	x	х	х	о

Bayes Theorem

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

- Swap the conditioning
- Sometimes easier to estimate one kind of dependence than the other

How many words?

- I do mainly business data processing
 - Fragments
 - Filled pauses
- Are cat and cats the same word?
- Some terminology
 - Lemma: a set of lexical forms having the same stem, major part of speech, and rough word sense
 - Cat and cats = **same lemma**
 - Wordform: the full inflected surface form.
 - Cat and cats = different wordforms

Moving toward language Probability and part of speech tags

- What's the probability of a random word (from a random dictionary page) being a verb?
- How to compute each of these:

>All words = just count all the words in the dictionary

- ➤# of ways to get a verb: number of words which are verbs!
- ≻If a dictionary has 50,000 entries, and 10,000 are verbs

≻P(V) is 10000/50000 = 0.2